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Nitrogen donor ligands have played a historical and prominent
role in coordination chemistry from its beginnings in Werner’s
time,1 yet new variants continue to emerge. During the investigation
of new chelating ligands, a degradation led to the discovery of an
azaallyl ligand, (2-py)CHNCH(2-py) (smif), whose chemical
properties are intriguing. A related decomposition of ((2-
py)CH2)2NH led to one previous example, (smif)2Zn.2 Synthesized
from the condensation of 2-pyridylaldehyde and 2-pyridylmethyl-
amine (99%), (smif)H is readily deprotonated by LiN(TMS)2 to
afford (smif)Li (73%). Initial synthetic studies and brief insights
into the electronic features and reactivity of smif are provided
herein.

Treatment of FeBr2(THF)2, CoCl2, and NiCl2(dme) in THF with
2 equiv of (smif)Li (generated in situ) afforded (smif)2M [M ) Fe
(1), 52%; Co (2), 87%; Ni (3), 67%]. Alternatively, exposure of
Fe[N(SiMe3)2]2THF3 with 1 or 2 equiv of (smif)H provided
(smif)FeN(TMS)2 (4, 74%) or 1 (80%). Solutions of dark-green 1
and deep magenta 2 and 3 were intensely colored and afforded
black-purple and gold crystalline solids, respectively, indicative of
complementary reflected light. Their structures are roughly D2d

according to NMR spectra, which reveal one smif environment,
and X-ray crystallography, as the view of 1 in Figure 1 illustrates.

1 is diamagnetic, and its Mössbauer spectrum (Figure 2) is
consistent with a covalent, low-spin Fe(II) complex. SQUID data
show that 2 exhibits a magnetic moment (µeff) of 1.7 at 10 K,
consistent with an S ) 1/2 ground state (GS), but µeff rises to >3.0
at 300 K.4 Its EPR spectrum at 30 K shows a rhombic signal with
Co hyperfine couplings: g [A(Co)] ) 2.01 [44 G], 2.135 [66 G]
and 2.21 [64 G]. 3 is EPR-silent but manifests a µeff of 2.8 at 300
K, with only a minor attenuation below 10 K, consistent with an S
) 1 GS.

The structures of 1-3 are reminiscent of axially compressed terpy
derivatives.5 Iron complex 1 displays short aza (Na) and pyridine
(Npy) Fe-N distances of 1.9012(14) and 1.9634(12) Å, respectively
(Table 1), in a symmetric (i.e., D2d) environment, corroborating its
low-spin character. The distortion from idealized Oh coordination
is evidenced by the Npy-Fe-Npy angle of 164.53(11)°. In contrast
to 1, the bis(amide) complex (dpma)2Fe [dpma ) ((2-py)CH2)2N]
(5) possesses metric parameters consistent with its S ) 2 (µeff )
5.0) GS, and its UV-vis spectrum shows no band more intense
than 5000 M-1 cm-1.

Two independent molecules of 2 exhibit longer average Co-N
distances [d(CoNa) ) 1.93(3) Å; d(CoNpy) ) 2.08(8) Å] and smaller
bite angles [e.g., ∠ NpyCoNpy ) 160.9(25)°], and one smif is slightly
canted in the plane perpendicular to the first [∠ NaCoNa′ )
176.1(18)°]. 3 possesses two smif ligands at equivalent long

distances [d(NiNa) ) 2.019(5) Å; d(NiNpy) ) 2.093(9); ∠ NpyNiNpy

) 158.1(4)°], with a cant similar to that in 2 [∠ NaNiNa′ )
176.06(8)°].

A better grasp of the electronic structures, geometries, and optical
features of 1-3 were obtained from density functional theory (DFT)
calculations. Figure 3 shows a simplified orbital diagram, which
reveals occupied nonbonding azaallyl carbon-based orbitals that
reside aboVe the “t2g” set [dxy (b1); dxz, dyz (e) in D2d]. These orbitals
maintain a roughly constant position at about -4.0 eV for 1-3
and differentiate smif from related tridentate ligands such as terpy5,6

by affording high-intensity intraligand (IL) bands. Two large
features in the UV-vis spectra of (smif)2M [1, 597 nm (16 000
M-1 cm-1), 441 (42 000); 2, 563 (29 000), 401 (20 000); 3, 574
(50 000), 399 (18 000)] were assigned as Cnb f Lπ* IL bands on
the basis of time-dependent DFT (TDDFT) calculations on 1. Its
calculated spectrum, which appeared blue-shifted by ∼0.25 eV,
revealed a minor MLCT component in these bands. The TDDFT
study permitted a tentative identification of d-d bands at ∼18 000
and 25 000 cm-1. Calculated splittings of the Oh t2g orbitals into
b1(dxy) and e(dxz, dyz) of D2d and of Oh eg into b2(dx2-y2) and a1(dz2)
of D2d are <1600 cm-1. Consequently, 1 can be estimated
(Tanabe-Sugano) to have ∆o g 18 000 cm-1 and B ≈ 470 cm-1,
consistent with the covalency shown in the Mössbauer spectrum.
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Figure 1. Molecular view of (smif)2Fe (1).

Figure 2. Zero-field Mössbauer spectrum of (smif)2Fe.
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Figure 3 indicates that smif may be redox-active7-12 in the case
of 2. For 1, nonbonding, carbon-based azaallyl orbitals are the
HOMO and HOMO-1. Ligand-field orbitals drop in energy in
going from Fe to Co to Ni, but the additional electron in 2 (vs 1)
may reside in a ligand π* orbital, rendering 2 formally as
Co3+(smif1.5-)2. Discrete structural changes are difficult to assess
because of delocalization into the py π* framework. Oxidation of
2 with AgOTf affords magenta [(smif)2Co]OTf (2+, 81%), which
possesses IL bands at 586 nm (23 000 M-1 cm-1) and 383 nm
(13 000 M-1 cm-1). Symmetric (D2d) structural features of 2+ are
consistent with its low-spin d6 character. In 3, the dx2-y2 (b2) and
dz2 (a1) orbitals drop below the smif π* orbitals, and the complex
is best described as Ni(II), consistent with its long d(NiN) and EPR
silence. The smif-based orbitals stay remarkably consistent for 1-3
but may be adjusted in future generations through the appropriate
choice of substituents.

The Cnb orbitals have ∼50% ionic and ∼50% covalent character
and are “non-innocent” in terms of reactivity. Complex 4 is a dimer
in the solid state, as Figure 4 illustrates. In solution, 4 is emerald-
green, with IL bands at 633 nm (52 000 M-1 cm-1) and 399 nm
(37 000 M-1 cm-1), but orange crystals reveal its conversion to the
amide dimer [(TMS)2NFe]2(smif)2 (42). 1H NMR spectral analysis
affords a Keq value of ∼4 × 10-4 M-1 (∆G° ≈ 5 kcal/mol) for the
reaction 2 4 a 42. The dimerization can be construed as either a
diradical coupling or a nucleophile/electrophile event, and polar and
nonpolar reactivity is anticipated for the smif backbone.

The smif ligand provides a rare opportunity to view a new
homologous series of first-row transition-metal complexes12 and
manifests a unique optical density that may be exploited in various
photochemical applications. Physical studies of 1-3 and variants
as well as (smif)2M (M ) V, Cr, Cr+, Mn) are ongoing.
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Table 1. Structural Parameters for (smif)2M (M ) Fe, 1; Co, 2; Ni, 3), [(smif)2Co]OTf (2+), (dmpa)2Fe (5), and [(TMS)2NFe]2(smif)2 (42)a

cmpd d(MNa) d(MNpy) d(CNa) ∠ NaMNpy ∠ NaMNpy′ ∠ NaMNa′ ∠ NpyMNpy ∠ NpyMNpy′

1 1.9012(14) 1.9634(12) 1.333(3) 82.3(2) 97.7(5) 179.11(6) 164.53(11) 91.0(12)
2b 1.93(3) 2.08(8) 1.337(7) 80.5(12) 95.1(2)-102.1(2) 177.5(3) 160.9(25) 91.6(18)
2+ 1.8768(11) 1.9252(19) 1.331(9) 83.9(2) 96.1(7) 179.05(10) 167.68(9) 90.7(19)
3b 2.019(5) 2.093(9) 1.325(4) 79.1(3) 96.6(2)-104.6(2) 176.06(8) 158.1(4) 92.1(16)
5b 2.001(13) 2.201(13) 1.418(2) 75.5(4) 99.8(2)-109.5(2) 175.9(16) 150.9(16) 86.90(7)-101.00(7)
42

c 1.9432(10) 2.193(3) 1.4345(16) 77.29(13) 102.7(11) 178.53(4) 154.48(4)

a Distances (Å) and angles (deg) are averages unless a range is given. Na is the aza nitrogen and Npy a pyridine nitrogen; primes distinguish different
smif ligands. b Two molecules in the asymmetric unit. c Na′ is (TMS)2N at 1.9538(10) Å.

Figure 3. Simplified MO diagrams of 1-3. L stands for smif and C for
azaallyl carbon. The dotted lines trace the ligand-field orbitals from Fe to
Co to Ni.

Figure 4. Molecular view of [(TMS)2NFe]2(smif)2 (42), obtained from
dimerization of 4.
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